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Non-collinear itinerant magnetism: the case of Mn,Sn 

J Sticht, K-H Hock and J Kiibler 
Institut fur Festkorperphysik, Technische Hochschule, D-6100 Darmstadt, Federal Republic 
of Germany 

Received 20 June 1989 

Abstract. Spin-density functional theory is applied to describe non-collinear itinerant 
magnetism. For this the theory is formulated and a new implementation is given. It 
serves to perform self-consistent energy-band calculations for the compound Mn3Sn which 
possesses a triangular magnetic structure. Our results are discussed in detail and compared 
with experimental data. 

1. Introduction 

We have recently formulated a local approximation to density functional theory to treat 
non-collinear, itinerant magnetic systems and applied it to metallic compounds like 
y-FeMn, RhMn,, PtMn, and Mn,GaN (Kiibler et a1 1988a, b). Although our theory 
was not the first to treat itinerant magnetic moments as vector observables which admit 
non-collinear arrangements-previous examples being work by Korenman et al (1977), 
You and Heine (1982), Oguchi et a1 (1983), Pindor et al (1983), Haines et a1 (1985), 
Sandratskii and Guletskii (1986) and Liechtenstein et a1 (1987)-we could show, for the 
first time, that under certain restricted symmetry conditions itinerant electrons conspire 
to form local magnetic moments attaining definite, non-collinear arrangements that 
are a property of the ground state. 

We here want to discuss briefly the density functional background again taking 
a slightly different point of view, but suggest at some length another more powerful 
implementation that removes some of the drawbacks of our earlier theory. We use 
this implementation and apply it to the compound Mn3Sn which experimentally shows 
an interesting magnetic order. The latter was discussed in detail by Nagamiya (1979) 
and more recently by Tomiyoshi and Yamaguchi (1982) who invoked Dzyaloshinsky- 
Moriya exchange interactions (Dzyaloshinsky 1958, Moriya 1960a, b) to explain the 
observed triangular magnetic order. Our calculations give a set of possible ground 
states, among them being the one observed. Since Dzyaloshinsky-Moriya exchange 
is brought about by a combination of spin-orbit and super-exchange interactions, 
we discuss spin-orbit coupling but, for technical reasons, cannot yet give results that 
unambiguously identify the ground-state order. Other, symmetry-adapted, non-collinear 
spin arrangements are calculated and found to have much higher total energies than 
the ground state. The reason for this is extracted from our band structure results. 

0953-8984/89/438155+16$02.50 @ 1989 IOP Publishing Ltd 8155 
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2. Theoretical background 

2.1. Density functional theory 

We begin by stating the theoretical framework as briefly as possible and write the total 
energy E as a functional of the density matrix p(r )  (Hohenberg and Kohn 1964, Kohn 
and Sham 1965, von Barth and Hedin 1972, von Barth 1984): 

where pZp( r )  (a and /? are spin indices) are the elements of p(r ) ,  the particle density is 

n(v) = Trp(r) (2) 

To is the kinetic energy of non-interacting electrons, E,. is the exchangexorrelation 
energy, and the units are such that the length is measured in Bohr radii and the energy 
in rydbergs. The external field w(v) is assumed to have elements w X a ( v )  and couples 
to the spin-density matrix. The variational property of the total energy is well known 
and need not be discussed here any further; for a most recent and thorough treatment 
the reader may consult Vignale and Rasolt (1988). Minimisation of the total energy 
with respect to the elements of the density matrix yields the effective single-particle 
equations 

2 

where the effective potential is 

and V,x,C(v) is the exchangexorrelation potential defined by the functional derivative 

Vkb"(r) = 

If we are dealing with 
are obtained from the 
follows : 

an N-electron system, then the elements of the density matrix 
N lowest-lying one-electron eigenfunctions of equation (3) as 

Central to this theory is the assumed functional dependence of the exchangesorrelation 
energy on the density matrix. Equivalent but physically more appealing is, instead, a 
dependence on a vector quantity describing the local spin-density vector or magnetic 
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moment vector. To obtain this we observe that at each point in space we can find a 
transformation matrix U(v) with elements U,,(v) such that 

is diagonal; ni(v) (i = 1,2) denote the eigenvalues of p( r ) .  For the matrix U(u) we 
choose the well known spin -; rotation matrix, 

) exp ( i i q ( v ) )  cos (;e(Y)) exp (-;iq(v)) sin ( ; e ( r ) )  ( -exp (;iq(v)) sin ( ;e (v) )  exp (-;iq(v)) cos ( i e ( v ) )  U(U) = 

and obtain with the requirement expressed by equation (7) the polar angles 4, 0 at 
each point in space as follows 

tan Q ( 4  = 2[(ReF12(4)2 + (Im P12(r))21”2/(Pll(v) - P 2 2 ( 4 ) .  (8b) 

Furthermore, using equation (7) to express the functional derivatives 6EXc /d  pap in 
terms of 6 E x c / 6 n j ,  we straightforwardly obtain the effective potential weff (v) (whose 
elements are the w$(Y) of equation (4)) as follows 

weff(v) = ~,(r)l + A U ( V ) ~ ( ( V ) .  (9) 

Here vo(v) is the spin-independent part of the effective potential given by 

where v (v )  is the nuclear potential, the quantity Av(v)  is given by 

and E’((Y) is the z component of the Pauli spin matrix in a reference frame which is the 
standard representation rotated by O ( v )  and 4 ( u ) ,  i.e. 

# ( v )  = u+(v)a’ (r )U(v)  = cos qv)d + sin qv)(cOs q(v)aX + sin q(v)a’). (12) 

In terms of the above variables the effective single-particle equation (3) becomes 

2 

p=1 

As normal with density functional theory the calculation needs to be made self- 
consistent, a requirement which besides charge density, n(u) = nl(v)  + n2(v),  and mag- 
nitude of the local magnetisation density, m(v) = nl(u) - n2(v),  now also applies to 
the direction of the magnetic moment, i.e. the angles (and starting quantities) in the 
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potential Au(r) 5 i p ( v ) ,  see equation (12), which supplies the wavefunctions with equa- 
tion (13); these in turn yield the density matrix and through its diagonalisation output 
angles O ( v )  and +(r) ,  equation (8). Although this appears quite plausible one might 
still ask whether the self-consistency condition is really necessary. For an answer we 
may follow Vignale and Rasolt (1988) and expand the potentials as well as the density 
matrix in terms of Pauli matrices (in the standard representation), i.e. 

and 

Then from the exact Hamiltonian the continuity equations in the ground state are 
easily derived : 

where j ,  is the paramagnetic current density and j , ,  its expansion analoguous to 
equation (14c) ; i.e. 

. N  

and 

%= 1 

The quantities w and p denote vectors spanned by the components w, and pi,  equations 
(14), and we assumed a zero external vector potential. Requiring equation (16) also to 
hold for the solutions of the single-particle equation (3), we obtain 

( YXC x p )  = 0 (18) 

i.e. the vector quantities Y x c  and p must be parallel if they are non-zero. This is 
equivalent to the above-mentioned self-consistency condition (because input angles 
characterise Y x c  and output angles p ) .  But, Vignale and Rasolt (1988) show more: 
their equation (6.10b) indeed admits solutions with 
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which they show to be a consequence of gauge invariance; however, in this case, a 
finite ‘exchangesorrelation vector potential’ as well as currents must be included in 
the theory, which means that the dependence of the exchange-correlation energy on 
the paramagnetic currents, equation (16), can no longer be ignored. This, however, is 
beyond the scope of our present theory. 

Returning to the self-consistent-field problem embodied in equation (1 3) we state 
two approximations without which this theory remains largely academic. The first is 
the well known local approximation to density functional theory where we write the 
exchangesorrelation energy as 

and interpret the dependence of e,, to be on the eigenvalues n l ( r )  and n2(v)  of the 
density matrix. The second concerns the dependence of the angles 0 and q5 on space, Y, 

i.e. the direction of local magnetisation. Here we make the atomic-sphere approximation 
and assume that at each point within a given sphere the local direction of magnetisation 
is the same, allowing, however, for different directions in different spheres. This way we 
replace a fine-grained mesh by a coarse-grained mesh and consequently use 8” and q5” 
instead of e ( v )  and #(U) labelling with v the type of atomic sphere. Similarly, the unitary 
transformation defined by U(r) now becomes U” which is assumed to diagonalise the 
density matrix integrated over the atomic sphere, S,  ; i.e. if one defines 

then 

Finally, as we showed earlier (Kubler et al 1988a), the total energy is easily obtained 
as follows: 

N 2 

(22)  
n(r)n(Y’) d3r d3r’ - i n(r) n,(u) d3r 

i=l IY - Y’I a=l n, 

where, for Y in the atomic sphere v, n,(v) denotes the diagonal elements of U” p ( v )  U”+; 
thus the spin-density in the vth atomic sphere is 

giving a magnetic moment (in p g )  of 



8160 J Sticht et a1 

2.2. Implementation 

The implementation that we will describe here is different from our earlier one (Kiibler 
et a1 1988a) and is more precise. The reason is that the basis functions which we 
use to expand the Bloch functions are numerical solutions of the locally diagonal 
spin-dependent Schrodinger equation whereas previously we used basis functions that 
locally solved a Schrodinger equation containing the spin-independent potential uo(y) ,  

equation (lo), only. We believe this better implementation is essential when dealing 
with rather large magnetic moments as we will do in the next section. 

Let us begin by defining the two-component basis functions =:(U), where v labels 
the vth atomic sphere that is also assumed to contain the origin of U, through the 
equation 

[(-V2 + u i ( ~ ) ) l  + AL.”(Y)G~]E>(Y) = EL E;(v) (23) 

where V ; ( U )  and Av“(v) are defined by equations (10) and (11) in the vth atomic sphere, 
0‘ is the z component of the Pauli spin matrix in the standard representation and, as 
usual, L = ( E ,  m) labels the angular momentum I and magnetic quantum number m. 
The function E is the product of a spinor function x G ,  where 

a = k l ,  with an v-dependent function (p(v) defined by 

and is thus a basis function solving the locally diagonal spin-dependent Schrodinger 
equation. If we specify the direction of the magnetic moment in the vth atomic sphere 
by means of the polar angles 0” and 4” with respect to some global axis, then we need 
solutions of the spin-coupled differential equation 

where 6”’ is given by equation (12), but U is replaced by the label v.  Now, obviously, 

YL(v) = uv- =>(U) (27) 

and for each L and v there are two solutions which we write in terms of those of 
equation (25) 

where F = +1 and the ‘rotated spinor functions, x”,‘, are 

and 
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Our definition of the basis functions is not yet complete and depends on the method 
used to solve the crystal Schrodinger equation, i.e. on the type of expansion used for the 
Bloch functions. In the augmented spherical wave (ASW) method (Williams et al 1979), 
we require at the radius, S, ,  of the vth atomic sphere the solutions, 4 ,  of equation (25 ) ,  
to match the value and slope of a spin-independent spherical Hankel function, hLv(v), 
of some small energy ( E ,  = -0.01 Ryd for convenience), centred at site v. We call 
these solutions of the eigenvalue equation (24) 'augmented' Hankel functions, denoting 
them by hLva with eigenvalue E:\,; an augmented Hankel function, centred at RI + T, 
in the crystal is then defined by 

hL,,(v - RI - z,);c'"' if I Y  - R, - z,,l < S, 
otherwise 

= *I. (30) c h,, (v - RI - t , ) ~ " ~  
V L , O ( ~  - R, - T,) = 

The advantage of the spherical Hankel functions is the well known KKR theorem 
(Korringa 1947, Kohn and Rostoker 1954) which allows their expansion about any other 
centre in terms of spherical Bessel functions, j,, ( v ) ,  i.e. if Y is such that ~ Y - R ,  -T,/ < S,, 
then for R I ,  z, other than R I ,  z p  

h,,(v - R, - 7,)) = C B I : ( ( R ,  - R l ) j L J , ( ~  - R I  - 7,) (31) 
L' 

where the BL:,(R) are the well known KKR 'structure' Factors (whose dependence on 
energy we suppressed in the notation). The spherical Bessel functions supply another 
set of boundary conditions for equation (25)  just like the spherical Hankel functions. 
We call them augmented Bessel functions, they have the energy E;,,, and are denoted 
by ] L , u ( ~ ) ;  again, a two-component augmented Bessel functions centred at R I  + z p  is 
then defined by 

The K K R  expansion theorem, equation (31), is now readily generalised to the unaug- 
mented two-component functions as follows: if Y is such that I Y  - R ,  - z,l < S,, then 
for R I ,  z, other than R , ,  z,, 

and Ti( are the matrix elements of 

For the augmented functions we therefore obtain 
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The structure factors G now contain information about both the crystal and the 
magnetic structure. They describe how the ‘tail’ of a two-component augmented 
Hankel function that is centred at some site in the crystal, having a well defined spin 
direction there with respect to some global frame of reference, appears at some other 
site with different spin direction as a linear combination of two-component augmented 
Bessel functions. Equation (36) finally serves to expand the Bloch function as 

where k is a vector in the Brillouin zone and the coefficients CL,,(k) are obtained from 
a Rayleigh-Ritz variational treatment of the effective one-particle Hamiltonian 

where q,, A s  and 5’ have been defined above. The determination of the Hamiltonian 
and overlap matrices proceeds exactly as described before by Williams et al (1979), now 
with a spin degree of freedom added. If the latter are formally included in the notation 
for L, which we temporarily may replace by 9 = (l,m,cr), then the Hamiltonian and 
overlap matrices are unchanged except for the replacements of L by 9 and B by G, cf 
Williams et al (1979) equation (29). 

We end this section with a remark about the construction of the charge density. 
When the coefficients CL,,a(k) and the corresponding band energies E ( k )  are determined 
(condensing the notation for the band index and wavevector k into the symbol k ) ,  we 
obtain the elements of the integrated density matrix, qi,,, equation (20), from the 
density-of-states matrix NL,,, ( E )  by means of 

where the integrand follows from 

where 

and the symbol (. . . 1 . . .), denotes an integral over the vth atomic sphere the arguments 
being augmented Hankel, h, or Bessel functions, j .  (Strictly speaking there is a factor 
near unity multiplying the bracket under the sum in equation (40) ; it serves to normalise 
the charge from each state and corrects for the atomic-sphere approximation.) The 
quantity &, is subsequently diagonalised for each atomic sphere v giving a local 
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direction of magnetisation for each v and the matrices U". The latter are used to 
construct a diagonal density-of-states matrix 

a'"' 

which is all that is needed to construct the charge density for spin-up and spin-down 
electrons in the local (diagonal) frame of reference, see Williams et a1 (1979), thereby 
closing the self-consistency cycle. The magnitude of the magnetic moment (in pB) of 
the atom v is, finally, 

3. Results for Mn,Sn 

The intermetallic compound Mn,Sn has the hexagonal crystal structure DO,, of space 
group D:,; it has two formula units in the unit cell and is illustrated in figure 1. The 
lattice parameters are given by Tomiyoshi (1982) as a = 5.665 A and c / a  = 0.7998. 
A free-position parameter allowed by the DO,, structure is the distance between 
neighbouring Mn atoms in the same plane, which is denoted by a [ ;  + 3(x - ; ) I ;  
Tomiyoshi (1982) gives x = + 0.0055. We used these parameters for our calculations 
rather than trying to obtain them from the minimum of the total energy. 

Mn Sn 
2.114 a e 
.?:314 0 0 

Figure 1. Basal plane projection of four unit cells of the DO19 crystal structure of Mn3Sn. 
Magnetic sublattices are labelled A, B and C (Kouvel and Kasper 1964). 

Below a Nee1 temperature of TN = 420 K magnetic order is found which is 
certainly non-collinear but, when it comes to details, is discussed quite controversially, 
see Tomiyoshi (1982), Tomiyoshi and Yarnaguchi (1982) and references therein, and 
most recently Tomiyoshi et a1 (1987) and Ohmori et al (1987). 

We want to contribute to this discussion (without being able to resolve it) and 
start by considering all possibilities that are allowed by symmetry. In what follows we 
will describe these possibilities using the c axis and the planes depicted in figure 1 as 
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Table 1. The magnetic structures possible in DO19 compounds, after Zimmer and Kren 
(1972). The notation is that of Koster et al (1963). 

r,' !r6- I -I 

-+- 
r; cr; I -1 

Structure jorientatior 

1 1  

Yagnetic space group 

'P63mm1c'lP6;mm1 c 

P6;m"c'l P6,m'mc I 

a frame of reference. This is only done so for convenience: since the spin frame of 
reference is not coupled with the crystal axes, all that is important in the present paper 
is the relative orientation of the spins. This will change when spin-orbit coupling is 
included in the theory; calculations along these lines are in progress. 

To enumerate the possible magnetic structures we refer to the 'lector notation 
introduced in equations (14) and find those irreducible representations of the space 
group D& that give a non-vanishing axial vector p for the six Mn sites. The symmetry 
arguments necessary for this were carried out by Zimmer and K r h  (1972) whose 
results are collected in table 1. Choosing one of these representations for the exchange- 
correlation potential V '' we recover the same representation for p and 

is an invariant, where the sum on v extends over the atomic spheres. This is, of 
course, the self-consistency condition. In table 1 the moment directions for only three 
Mn atoms and one Sn atom in each basal plane are sketched since the moments of 
corresponding atoms in adjacent planes can only be parallel or antiparallel. For the 
latter case the symbol of the representation and the operations of the magnetic space 
group are given in parantheses. 

Our numerical calculations verify that the configurations given in table 1 are the 
only self-consistent ones; those corresponding to No 2 are depicted for adjacent planes 
in figure 2, see r: and r;, which show the centre portion of figure 1 with the direction 
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Figure 2. Some magnetic-moment arrangements of the six Mn atoms in the unit cell, labels 
are those defined in table 1. 

of magnetisations included. One can continuously go from state to r, if one 
is willing to go through a set of non-self-consistent states. The results for such a 
calculation are shown in figure 3(a), where we give the total-energy difference per unit 
cell (two formula units) as a function of the (input) angles 4 needed to rotate the 
directions of one plane of Mn atoms. Figure 3(b) shows that the antiferromagnetic 
non-collinear state r: has lowest total energy and the state r; is metastable. Also 
shown in figure 3(b) are the total-energy differences of some other self-consistent 
states obtained by separate calculations: the next state above the ground state has a 
ferromagnetic component; it is collinear and of symmetry corresponding to No 8 
of table 1 ; following this is the collinear antiferromagnetic state r; (No l), still higher 
is the collinear ferromagnetic state rl (No l), the highest being the non-collinear 
antiferromagnetic state r; (No 2) .  

800 

600 

- 
2 400 
LLi a 

200 

0 

I 

m 

3.1 
0 
VI + .- 

3.0 5 
+ c 

2.9 E 8 
U + 

2 .0  
0 
r 

60 120 180 
1p 

Figure 3. ( a )  Total-energy differences per unit cell and Mn magnetic moments as a function 
of the angle 4 leading from the state r:(4 = 0") to r;(4 = 120"). ( b )  Total-energy 
differences per unit cell of some other states defined in table 1. 

The magnetic momcnt of Mn in this compound is calculated to be 2 . 9 5 ~ ~  -t 5%,  
the difference, f5%, being in no way random but depending on the state in question. 
Thus, figure 3(a) also shows the magnetic moment as a function of 4 going from 
the state r: with 3 . 0 7 ~ ~  to r; with 2 . 8 2 ~ ~ .  In table 2 we collect the values of the 
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calculated magnetic moments for all states given in table 1 (except for No 9 which 
we are unable to prepare) and, besides the total-energy differences, list the states that 
are equivalent in our theory (the latter being due presumably to our neglecting the 
spin-orbit interaction). 

Table 2. List of possible states, total energy difference, A E ,  counted from that of state r:, 
in meV per unit cell, and magnetic moment of Mn in units of p ~ .  (Moment of Sn negligible 
throughout.) 

States from table 1 A E  (mev) Mn moment ( p ~ )  

r:, r;, r; (NO 71, r; (NO 5) o 3.07 
r; (NO 8) 287 2.93t 
r;, r; (NO 41, r; (NO 6) 511 2.77 
r:, r; (NO 41, r; (NO 6) 697 3.07 
r;, r;, r; (NO 7) 892 2.82 

t Average value. 

Finally, in view of the experimental results to be discussed in the next section, it is 
of interest to probe some low-lying states with a ferromagnetic component. Without 
a magnetic field there are no such self-consistent states near the ground state, but, 
ignoring self-consistency, one can go from state r: to the degenerate state rt (No 7) 
via the state (No 8) (called F-AF here) by changing the spin directions of atoms B 
and C from $J = 0" to $J = 120°, compare r: (No 7) and r: in figure 2. Note that in 
this case (F-AF) the state rJ as described in table 1 (No 8) is not really the one used 
here since all spins remain in the plane I c. The results of this calculation are shown 
in figure 4 where both the total-energy differences per unit cell and the Mn magnetic 
moments are given as a function of the input angle 4. 

We next want to compare our results with experimental data, discuss them and try 
to expose the physical mechanism that is operating to stabilise the ground state among 
all the other states. 

4. Discussion 

It appears that stoichiometric samples of Mn3Sn are very hard to prepare, so we must 
be content with data from samples with excess Mn atoms having a composition that 
is stated to range from Mn3,,Sn to Mn,,,Sn. Reference to very early work can be 
found in Tomiyoshi (1982). His analysis of polarised-neutron diffraction data using the 
Mn2+ magnetic form factor and a magnetic structure corresponding to the state rt 
(No 7) (see table 2 and figure 2) gives a value for the magnetic moment of 1.78pB/Mn 
at 293 K which he extrapolates to T = 0 K using the Brillouin function of S = 1 
obtaining 2.1pB/Mn. Although his magnetic structure is indeed one of the possible 
calculated ground states, his magnetic moment is considerably smaller than our value 
of - 3pB/Mn. We therefore asked whether our spin density could be inconsistent with 
the neutron data and calculated the magnetic form factor (Lovesey 1984) using the 
spin density of the state rt (No 7). The result is shown in figure 5 which indicates 
that, except for two data points which were also excluded by Tomiyoshi in his analysis 
our calculated results are in good agreement with the experimental data. 



Non-collinear magnetism 8167 

1p 

0 0.4 0.8 1.2 
sin8 I A =y 

Figure 4. Total-energy differences per unit cell and 
Mn magnetic moments as a function of the angle 
4 leading from the state rT(4 = 0") to r: (No 7 )  
(4 = 120"). Except for r: and r: all states have a 
ferromagnetic component, but only the state (F-AF) 
of symmetry i-z is self-consistent. 

Figure 5. Calculated form factor of Mn in Mn3Sn 
using the ground-state spin densities (curve), experi- 
mental values from Tomiyoshi (1982) (open circles), 
and Mn2+ data from Watson and Freeman (1961) 
(crosses). 

Quite recently Ohmori et al (1987) found a long-period magnetic structure at 
low temperatures propagating along the c axis while keeping the spin arrangment- 
presumably of rl symmetry-in the planes perpendicular to the c axis; they state 
the period to be 12c and the magnitude of the magnetic moment to be 2.75pB/Mn. 
Although this latter value is nearly within the range of our calculated values, see 
table 2, the screw-spin structure poses new problems which are presently beyond our 
computational capabilities. 

Another aspect of the experimental results is the existence of a weak ferromag- 
netic component below the Nkel temperature of approximately 0 . 0 1 ~ ~  per unit cell. 
Tomiyoshi and Yamaguchi (1982) state that this is not due to the non-stoichiometry 
of the compounds, but arises from a distortion of the triangular spin structure. In fact, 
the distortion proposed is easily visualised by considering the action of a magnetic field 
along the spin direction of the atoms C in figure 2, state r; (No 7), which will slightly 
twist the spin direction of the four atoms A and B. Of course, a glance at figure 4 
shows that such a distortion costs energy and will not be stable when the magnetic 
field is turned off. But the very same mechanism that will lift the degeneracy of the 
states r; and rl (No 7) may also alter the energetics slightly; this is presumably 
spin-orbit coupling (SOC) as embodied in Dzyaloshinsky (1958) and Moriya (1960a, b) 
exchange that was proposed by Tomiyoshi and Yamaguchi (1982) to be effective in this 
compound. That the energy changes brought about by SOC are indeed small, but not 
negligible, on the energy scales of figures 3 and 4 can be demonstrated in two special 
cases. These concern calculations including SOC for the collinear ferromagnetic and 
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antiferromagnetic spin structures labelled r; and in figure 3(b) ,  the former being 
shifted by soc towards lower energy by 90 meV per unit cell, the latter by 70 meV per 
unit cell. 

Returning to less delicate questions we now want to make an attempt to shed some 
light on the physical mechanism that gives rise to the large energy differences exposed 
in figures 3 and 4. 

1.0 

0.5 

- - 2 
x 0  
P 
c w 

-0.5 

-1 0 
L A r K M  r 

Figure 6. Band structure of Mn3Sn in the low-total-energy state rt near the Fermi energy, 
E F .  Asterisks are explained in the text. 

Considering the geometries of the spin arrangements shown in figure 2 one im- 
mediately sees that figure 3 (a) reflects purely inter-plane exchange energies whose sign 
is thus seen to be ferromagnetic, whereas figure 4 reflects intra-plane exchange which 
is seen to be antiferromagnetic. The band structure of the low-total-energy state rl 
(or any other degenerate state-see table 2) is shown near the Fermi energy, E,, in 
figure 6, that of the high-total-energy state r; is shown in figure 7. 

The different magnetic states are seen to possess completely different band struc- 
tures, but one structure can be transformed into the other by a rotation through the 
angle as in figure 3(a). Thus in figure 7 one can follow the band states at T ( k  = 0) 
and see them change when going from the low-total-energy state r; to the high-total- 
energy state r;. While the symmetry of the state r; requires all band states to be at 
least twofold (spin) degenerate, because the sublattices A have opposite spin, and so 
do, separately, the sublattices B and C, the spin degeneracy is partially lifted in the 
state rl where the sublattices A have parallel spins and, similarly, for B and C (see 
figure 2) .  Most conspicuous is the behaviour of the state marked with asterisks which 
is split in the state r; by N 1.5 eV. The wavefunctions of the split state consist of Sn 
pz states plus Mn xz and yz on one plane combined symmetrically in case of the lower 
state or antisymmetrically in case of the upper state with Sn p, and Mn xz, yz states 
on the other plane. This splitting (which one might call covalent) obviously lowers the 
total energy, furthermore, comparing figure 6 with figure 7, it quite effectively separates 
the states near the Fermi energy, E,, lowering majority states below and rising minority 
states above E,. The combined effect of this is a larger magnitude of the magnetic 
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Figure 7. Band structure of Mn3Sn in the high-total-energy state r; near the Fermi energy, 
E F .  The asterisk is explained in the text. 

moment in the low-total-energy state r; when compared with the high-total-energy 
state r,, see also figure 3(a),  where the magnetic moment is shown as a broken curve. 
Of course, the larger magnetic moment gives rise to a lower total energy which is 
roughly - + I p 2 ,  where I is the intra-atomic exchange energy, typically of order of eV, 
and p is the magnetic moment in multiples of p g .  The connection between covalency, 
magnetic moment changes and the total energy has been discussed before by Kubler 
et al (1983) for the case of Heusler alloys. 

.......... ..................................... ::::..t .... 
-0.5 ................................. 

....... ......... ................... ......... ............ L ......................................................... ..... ............................................... 
r; 

Ip 
r; 

Figure 8. Band energy of the state at T ( k  = 0) as a function of the angle 4 as in figure 
3(a). The asterisks above r: mark the states similarly denoted in figure 6, that above r; 
marks the state similarly denoted in figure 7. 

Finally, the antiferromagnetic intra-plane exchange energy can also be made plau- 
sible using band structure data. Thus, when one moves from the left or right in figure 4 
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towards the ferromagnetic state (F-AF) at the centre, all remaining spin degeneracies 
will be lifted in figure 6,  in particular, with reference to figure 8, the huge splitting 
marked at the left with the two asterisks decreases and the states at f0.3 eV and 
-0.43 eV split up into four states bringing majority states up towards the Fermi energy 
and minority states down. The ensuing decrease of the magnetic moment is apparent 
in figure 4 and gives rise to the higher total energy. 

We thus conclude that our calculations revealed the reason for the energetics of the 
large trends of the possible magnetic structures in Mn3Sn, finer details, however, that 
distinguish the states of low total energy, can only be resolved when our calculations 
include both the effects of non-collinearity and spin-orbit coupling. Calculations along 
these lines are underway. 
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